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In this paper, we review some of the properties of financial and other spatio-temporal time
series generated from coupled map lattices, GARCH(1,1) processes and random processes
(for which analytical results are known). We use the Hurst exponent (R/S analysis) and
detrended fluctuation analysis as the tools to study the long-time correlations in the time
series. We also compare the eigenvalue properties of the empirical correlation matrices,
especially in relation to random matrices.
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1. Introduction

Financial time series analysis is of great interest to theoreticians for making infer-
ences and predictions though it is primarily an empirical discipline. The uncertainty
in the financial time series and its theory makes it specially interesting to statisti-
cal physicists'. One of the most debatable issues in financial economics is whether
the market is “efficient” or not. The “efficient” asset market is one in which the
information contained in past prices is instantly, fully and continually reflected in
the asset’s current price. The more efficient the market is, the more random is the
sequence of price changes generated by the market. Hence, the most efficient market
is one in which the price changes are completely random and unpredictable. This
leads to another pertinent question of financial econometrics: whether asset prices
are predictable. Two of the most important and simple models of probability the-
ory and financial econometrics that deal with predicting future price changes, the
random walk theory and Martingale theory, assume that the future price changes
are functions of only the past price changes. The “logarithmic returns” is calculated
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using the formula
r(t) =In P(t) —In P(t — 1), (1)

where P(t) is the price (index) at time step ¢. A main characteristic of the random
walk and Martingale models is that the returns are uncorrelated.

In the past, several hypotheses have been proposed to model financial time series
and studies have been conducted to explain their most characteristic features. The
study of long-time correlations in the financial time series is a very interesting and
widely studied problem, especially since they give a deep insight about the under-
lying processes that generate the time series?. The two very popular measures to
quantify the long-time correlations, and study the strength of trends, are the R/S
analysis to calculate the Hurst exponent and the detrended fluctuation analysis
3:4,5,6,7 which will be described later in the paper. Also, the random matrix the-
ory 8, which was originally developed for the interpretation of nuclear spectra has
been very useful in analyzing the multi-variate time series and modeling their sta-
tistical properties. Many other complex systems such as chaotic quantum systems,
echo-cardiography (ECG) data, atmospheric time series and internet connections
have also been analyzed using the random matrix theory ?. The finding that the
spectra of correlation matrices can be modeled as random matrices chosen from
an appropriate ensemble of the random matrix theory, testify the universal nature
of spectral fluctuations. In terms of applications, random matrix theory basically
provides another criterion to distinguish between signal and noise in the spectra of
the correlation matrix derived from multivariate timeseries.

In this paper, we study the empirical financial time series and compare them
with those generated from random time series, multivariate spatio-temporal time
series drawn from coupled map lattices, and the multiplicative stochastic process
GARCH(1,1), which have been long used to model financial time series. We calculate
the Hurst exponent and the exponent using detrended fluctuation analysis. Also,
we study the spectral properties of the eigenvalues of the correlation matrices for
the multi-variate time series of both, the spatio-temporal time series drawn from
coupled map lattices in the chaotic regime and the financial time series.

2. Time series
2.1. Random time series

The distribution of returns (the changes in the logarithms of prices) were first mod-
eled for “bonds” by Bachelier'®, as a Normal distribution, assuming that the price
changes are independent and identically distributed, and using the central limit
theorem of probability theory. The classical financial theories had always assumed
this Normality, until Mandelbrot and Fama pointed out that the empirical return
distributions are fundamentally different— they are “fat-tailed” and more peaked
compared to the Normal distribution'!>12. One may also refer to the figures appear-
ing in the series of articles of Mandelbrot ' for a comparison of a random time
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series and the real empirical returns.

2.2. Multivariate spatio-temporal time series drawn from coupled
map lattices

There was a considerable interest in the 1980s that the price changes may be mod-
eled by a low-dimensional chaotic system'#, but it was shown that such a model
was not proper!®.

Here, we use coupled map lattices as a source of multivariate spatio-temporal
data with required properties, in order to compare with empirical return series. The
concept of coupled map lattices (CML) was introduced as a simple model capable
of displaying complex dynamical behavior generic to many spatio-temporal systems
and has been extensively studied in the last 20 years'®17-18. Coupled map lattices are
discrete in time and space, but have a continuous state space. By a change of system
parameters we can tune the dynamics for desired spatial correlation properties,
many of which have already been studied and reported!®. We consider the class of
diffusively coupled map lattices in one-dimension with sites i = 1,2...n' of the form

Yin = L= @) + (S + F6IN) (2)

where f(y) = 1 — ay? is the logistic map whose dynamics is controlled by the
parameter a. The parameter € is a measure of coupling between nearest-neighbor
lattice sites. We choose periodic boundary conditions, z(n + 1) = z(1). For the
numerical computations reported in this paper, the coupled map lattice with n =
500 was chosen and iterated, starting from random initial conditions, for p = 5 x 107
time steps, after discarding 10° transient iterates.

As the parameters a and € are varied, the spatio-temporal map displays vari-
ous dynamical features like frozen random patterns, pattern selection, space-time
intermittency, and spatio-temporal chaos 2. We intend to study the coupled map
lattice dynamics found in the regime of spatio-temporal chaos, where correlations
are known to decay rather quickly as a function lattice sites. Hence, in the time
series generated, we have chosen parameters a = 1.97 and € = 0.4 in the regime of
spatio-temporal chaos. In this regime, each lattice site will exhibit chaotic dynamics.
We will contrast this with the S&P stock market data.

2.3. Multiplicative stochastic process GARCH(1,1)

Considerable interest has been in the application of ARCH/GARCH models to
financial time series which exhibit periods of unusually large volatility followed
by periods of relative tranquility. The assumption of constant variance or “ho-
moskedasticity” is inappropriate in such circumstances. A stochastic process with
auto-regressional conditional “heteroskedasticity” (ARCH) is actually a stochastic
process with “non-constant variances conditional on the past but constant uncon-
ditional variances”!?.
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An ARCH(p) process is defined by the equation
ol =ap+auxi |+ ...+ apwf_p, (3)

where o, a1, ...ap are positive parameters and z; is a random variable with zero
mean and variance o7, characterized by a conditional probability distribution func-
tion f¢(z), which may be chosen to be Gaussian. The nature of the memory of the
variance o7 is controlled by the parameter p.

The generalized ARCH processes, called the GARCH(p, q) processes, introduced
by Bollerslev?? is defined by the equation

o7 =g +onx; g+ .+, + P17y + -+ Bpoi (4)

where f1, ..., B, are the additional control parameters.

The simplest GARCH process is the GARCH(1,1) process with Gaussian con-
ditional probability distribution function f¢(x), and is given by

0} = o+ a1z + fro;_;- (5)

It was shown in?! that the variance is given by
o

o= ———"—+ 6
l—a;—p’ (©)
and the kurtosis is given by
6a?
K=3+ . 7
1—30[%—204151—B% ( )
The random variable z; can be written in term of o, by defining
Tt = N0t (8)
where 7; is a random Gaussian process with zero mean and unit variance.
We can rewrite Eq. 5 as a random multiplicative process
o} = ao + (umi—y + B1)op_;- 9)

For an insight of the time-dependent nature of the return generating process,
empirical return series were fitted with GARCH(1,1) coefficients by Toyli et al*2.

2.4. Empirical financial time series

In this paper, we have used two different sets of financial data for different purposes.
The first set from the Standard & Poor’s 500 index (S&P500) of the New York Stock
Exchange (NYSE) from July 2, 1962 to December 31, 1997 containing 8939 daily
closing values. The second set of data contains the return time series of 1189 stocks
of the New York Stock Exchange, from January 2, 1991 to December 31, 2001
containing 2775 daily closing values per stock. It has been used to calculate the
correlation matrix and evaluate the spectral density, also described later in this

paper.
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3. Estimation of Hurst Exponents and DFA exponents
3.1. Hurst Exzponent using R/S Analysis

The rescaled range (R/S) analysis to calculate the Hurst exponent is used to measure
the strength of trends or “persistence” in different processes— the rate of change of
rescaled range with the change of the length of time over which the measurements
are made.

We divide the time series & of length T into N periods of length 7, such that
N7 =T. Then for each period i = 1,2, ..., N, containing 7 observations, the cumu-
lative deviation is given by

x0= Y (&-©,), (10)

t=(i—1)7+1

where (£)_ is the mean within the time-period and is given by

1 iT
(€=~ > & (11)
t=(i—1)7+1
The range in the i-th time period is given by
R(7) = max X (1) — min X (1), (12)

and the standard deviation is given by

T

sm=l2 Y @-©)] - (13)

o
t=(i—1)7+1
Then R(7)/S(r) is asymptotically given by a power-law
R(r)/S(r) = k7™, (14)

where & is a constant and H is called the Hurst exponent. In general, “persistent”

behavior with fractal properties is characterized by a Hurst exponent 0.5 < H <1,

random behavior by H = 0.5 and “anti-persistent” behavior by 0 < H < 0.5.
Usually, the logarithm of Eq. 14 are taken on both sides

log(R/S) = H log(7) + log(k), (15)

and several values of log(R/S) are plotted against log(7) to determine the Hurst
exponent from the slope of the plotted curve. In Fig. 1, the results for the R/S
analysis to calculate the Hurst exponent are shown.
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Fig. 1. R/S analysis. (a) Random time series (3000 time steps) [solid line], (b) multivariate spatio-
temporal time series drawn from coupled map lattices given by Eq. (2) using parameters a = 1.97
and € = 0.4 (3000 time steps) [triangles], (c) multiplicative stochastic process GARCH(1,1) using
parameters oo = 0.00023, a1 = 0.09 and Bo = 0.01 (3000 time steps) [squares]|, and (d) Return
time series given by Eq. (1) of the S&P500 stock index (8938 time steps) [circles].

3.2. Detrended Fluctuation analysis

In the DFA method, we consider a series, &. We first divide the integrated series of
length T into N non-overlapping periods of length 7, such that N7 =T.

In each period, we fit the time series by using a first order polynomial function,
which is called the local trend 2z; = at + b. We detrend the time series, by subtract-
ing the local trend in each period ¢ = 1,2,..., N, and we calculate the detrended
fluctuation function

D=

iT

Fo=|2 Y @-=2| - (16)

T
t=(i—1)7+1

The above computation is repeated for box sizes 7 (different scales) to provide a
relationship between F(7) and 7. A power-law relation between F(7) and the box
size 7 indicates the presence of scaling: F'(7) ~ 7%. The parameter «, called the
scaling exponent or correlation exponent, represents the correlation properties of
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the signal: if @ = 0.5, there is no correlation and the signal is an uncorrelated signal
(white noise); if a > 0.5, the signal is anti-correlated; if a < 0.5, there are positive
correlations in the signal.

In Fig. 2, the results for exponents calculated using DFA analysis are shown.

Log(F (1)
o
T T T
1 | 1

o
_
N
w
N .
(6]

Fig.2. DFA analysis. (a) Random time series (3000 time steps) [solid line], (b) multivariate spatio-
temporal time series drawn from coupled map lattices given by Eq. (2) using parameters a = 1.97
and € = 0.4 (3000 time steps) [triangles], (c) multiplicative stochastic process GARCH(1,1) using
parameters oo = 0.00023, a1 = 0.09 and Bo = 0.01 (3000 time steps) [squares]|, and (d) Return
time series given by Eq. (1) of the S&P500 stock index (8938 time steps) [circles].

The exponents of the Hurst and DFA analyzes are shown in Table 1.

Table 1. Hurst and DFA exponents.

Process Hurst exponent DFA exponent
Random 0.50 0.50
Chaotic (CML) 0.46 0.48
GARCH(1,1) 0.63 0.51

Financial Returns 0.99 0.51




May 5, 2005 12:39 WSPC/INSTRUCTION FILE  as'ijmpc

8 A. Chakraborti and M.S. Santhanam

4. Correlation matrix and Eigenvalue density

In the earlier sections, we studied some measures like the R/S analysis and detrended
fluctuation analysis suitable for analyzing univariate data. Since the stock-market
data is essentially a multivariate time series data, we construct a correlation matrix
to study its spectra to contrast it with the random multivariate data from coupled
map lattice. It is known from previous studies that the empirical spectra of corre-
lation matrices drawn from time series data, for most part, follow random matrix
theory?4.

4.1. Correlation matriz

4.1.1. Correlation matrix from spatio-temporal series from coupled map
lattices

Consider a time series of the form z'(z,t), where z = 1,2, ...n and t = 1, 2....p denote
the discretized space and time, respectively. In this, the time-series at every spatial
point is treated as a different variable. We define the normalized variable as
'(z,1) — (2'(x))
2(z,t) = — L 17
(2,1) o a7)
where the brackets (.) represent temporal averages and o(z) the standard deviation
of 2’ at position z. Then, the equal-time cross-correlation matrix that represents
the spatial correlations can be written as

Se,z = (2(z,t) 2(z',t)) z,z' =1,2,...n (18)

The correlation matrix is symmetric by construction. In addition, a large class
of processes are translationally invariant and the correlation matrix can contain
that additional symmetry, too. In time series analysis, the averages (.) have to
be replaced by estimates obtained from finite samples. As usual, we will use the
maximum likelihood estimates, (a(t)) ~ % b_, a(t). These estimates contain sta-
tistical uncertainty, which disappears for p — oco. Ideally we require p > n to have

reasonably correct correlation estimates.

4.1.2. Financial Correlation matriz

If there are N assets with price P;(t) for asset 7 at time ¢, then the logarithmic
return of stock 4 is 7;(t) = In P;(t) — In P;(t — 1), which for a certain consecutive
sequence of trading days forms the return vector r;. In order to characterize the
synchronous time evolution of stocks, the equal time correlation coefficients between
stocks 7 and j is defined as

pii = (rir;) — (ri)(r;)

1) — - )
VIr2) = r?lir) — (r;)?]
where (...) indicates a time average over the trading days included in the return
vectors. These correlation coefficients form an N x N matrix with —1 < p;; < 1.

(19)
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If p;; = 1, the stock price changes are completely correlated; if p;; = 0, the stock
price changes are uncorrelated and if p;; = —1, then the stock price changes are
completely anti-correlated?3.

4.2. Eigenvalue Density

The interpretation of the spectra of empirical correlation matrices should be done
carefully if we would like to distinguish between system specific signatures and
universal features. The former express themselves in the smoothed level density,
whereas the latter usually are represented by the fluctuations on top of this smooth
curve. In time series analysis, the matrix elements are not only prone to uncertainty
such as measurement noise on the time series data, but also statistical fluctuations
due to finite sample effects. When characterizing time series data in terms of random
matrix theory, we are not interested in these trivial sources of fluctuations which
are present on every data set, but we want to identify the significant features which
would be shared, in principle, by an “infinite” amount of data without measurement
noise. The eigenfunctions of the correlation matrices constructed from such empiri-
cal time-series carry the information contained in the original time-series data in a
“sraded” manner and they also provide a compact representation for it. Thus, by
applying a random matrix theory based approach, we try to identify non-random
components of the correlation matrix spectra as deviations from random matrix
theory predictions 4.

We will look at the eigenvalue density that has been studied in the context of
applying random matrix theory methods to time-series correlations. Let A/(\) be
the integrated eigenvalue density which gives the number of eigenvalues less than a
given value A. Then, the eigenvalue or level density is given by

o) = (20)

This can be obtained assuming random correlation matrix®® and is found to
be in good agreement with the empirical time-series data from stock market
fluctuations3!. From RMT considerations, the eigenvalue density for random corre-
lations is given by,

Q

=55 VAmaz — N = Anin) (21)

prmt(A)
where @ = N/T, the ratio of number of variables to length of each time se-
ries. Here, Ajnqe and Ay, represent the maximum and minimum eigenvalues
of the random correlation matrix respectively. They are given respectively, by,
Amaz,min = 1+ 1/Q £ 24/1/Q. However, due to presence of correlations in the
empirical correlation matrix, this eigenvalue density is often violated for a certain
number of dominant eigenvalues. They often correspond to system specific infor-
mation in the data. In Fig. 3 we show the eigenvalue density for S&P500 data and
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also for the chaotic data from coupled map lattice. Clearly, both curves are qual-
itatively different. Thus, presence or absence of correlations in data is manifest in
the spectrum of the corresponding correlation matrices.

p(A)

Fig. 3. The top figure shows spectral density for multivariate spatio-temporal time series drawn
from coupled map lattices The figure below shows the eigenvalue density for the return time series
of the S&P500 stock market data (8938 time steps).



May 5, 2005 12:39 WSPC/INSTRUCTION FILE  as'ijmpc

Financial and other spatio-temporal time series: Long-range correlations € Spectral properties 11

5. Discussions and Conclusions

In this paper, we studied the Hurst and DFA exponents for the empirical financial
time series and compared them with those generated from random time series,
multivariate spatio-temporal time series drawn from coupled map lattices, and the
multiplicative stochastic process GARCH(1,1), which have been long used to model
financial time series. From the values of the exponents, nothing conclusive about the
nature of the financial time series can be said. An interested reader may compare the
values to those found in Refs.?%:%:6:7, We also studied the spectral properties of the
eigenvalues of the correlation matrices for the multi-variate time series of both, the
spatio-temporal time series drawn from coupled map lattices in the chaotic regime
and the financial time series. The curves for eigenvalue densities are qualitatively
different for the two cases, indicating the presence or absence of correlations in the
data.
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